1. (i) bond breaking is endothermic/ energy has to be put in to break a bond (1)
(ii) bonds broken: $3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+1.5(\mathrm{O}=\mathrm{O})=2781 \mathrm{~kJ}$ (1) bonds made: $2(\mathrm{C}=\mathrm{O})+4(\mathrm{O}-\mathrm{H})=3470 \mathrm{~kJ}(\mathbf{1})$
$\Delta H_{\mathrm{c}}=-689\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
2. (a) (i) (heat/energy change) when 1 mole of substance is formed (1) from its elements (1)
(ii) $1 \mathrm{~atm} / 101 \mathrm{kPa}$ and a stated temperature $/ 25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ (1) 1
(iii) $\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad 2$ balanced equation forming 1 mol CO (1) state symbols (1)
(iv) cycle drawn/sum of ΔH (products) $-\Delta H$ (products) (1) $-75-242+\mathrm{x}=-110$ (1) $\Delta H=(+) 207 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
(b) production of margarine/ammonia/Haber process (1) 1
3. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
formulae \checkmark
balancing \checkmark
ignore state symbols
4. (enthalpy/ energy/ heat change) when 1 mole of substance/ element/ compound \checkmark (NOT absorbed)
is completely burnt/ burnt in excess oxygen
under standard conditions (if conditions stated they must be correct)
5. (i) (enthalpy change) when 1 mole of compound is formed from the constituent elements
(ii) $6 \mathrm{C}(\mathrm{s})+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})$
correct formulae and balancing tate symbols
(iii) temperature $25^{\circ} \mathrm{C} / 298 \mathrm{~K} /$ a stated temperature (if justified) pressure $1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa}$
6. diagram to show
lines to show energy level at start above that at end of reaction ΔH labelled between reactants and products
E_{a} labelled from reactants to top of energy 'hump’
7. correct Hess’ cycle
$x-890=-572-394$
$x=-76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
8. (i) $1652 / 4=413\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(ii) $(\mathrm{C} \square \mathrm{C})+6(\mathrm{C} \square \mathrm{H})=2825$
$(C \square C)=2825-6(413)=347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
9. (a) (a reaction) that releases energy/ (a reaction) that releases heat/ a reaction with a negative $\Delta \mathrm{H}$ (1)
(b) (i) diagram to show
upward hump (1)
$\mathrm{CO}_{2}+(2) \mathrm{H}_{2} \mathrm{O} /$ carbon dioxide and water below reactants (1)
(ii) E_{a} marked (1)
if an arrowhead is included, it must be upwards
10. (a) (heat/ energy change) when 1 mole of substance is formed (1) from its elements (1)
(b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
balanced equation (1)
state symbols (1)
(c) cycle drawn/ sum of enthalpy changes products - sum of enthalpy changes reactants (1)
$-75-242+x=-110$ (1)
$\Delta \mathrm{H}=207\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
(d) any industrial use, examples include manufacture of ammonia/ for Haber process 1
manufacture of margarine/ hydrogenation of alkenes
11. (i) to break a bond energy has to be put in/ breaking bonds is endothermic
(ii) energy needed to break 1 mole of bonds in the substance in the gaseous state 2
(iii) bonds broken:
$3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+112(\mathrm{O}=\mathrm{O})=2781 \mathrm{~kJ} \checkmark$
bonds made:
$2(\mathrm{C}=\mathrm{O})+4(\mathrm{O}-\mathrm{H})=3470 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{c}}=-689 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(iv) actual bond enthalpies may be different from average values conditions are not standard / methanol/ water is a liquid under standard conditions
12. (i) (enthalpy/ energy change) when 1 mole of substance/compound formed from its elements
under standard conditions \checkmark (if conditions quoted must be correct - $25 \mathrm{C} / 298 \mathrm{~K}, 1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa}$)
(ii) $\mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \checkmark \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$ balanced species state symbols \checkmark
(iii) cycle \checkmark
$\mathrm{x}-791=-602-2(33)$
$\mathrm{x}=123$
3
13. (i) reaction carried out at 298 K and 1 atm pressure (or other relevant units) (1)
(ii) enthalpy change when 1 mole (1)
(of substance) is burnt in excess oxygen (1) 2
(iii) $4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ at lower energy than reagents (1)
E_{a} marked correctly (1)
$\Delta \mathrm{H}$ marked correctly (1) 3
[6]
14. (i) $4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
reagents and products (1)
state symbols (1) 2
(ii) $4 \mathrm{C}+5 \mathrm{H}_{2} \xrightarrow{X} \mathrm{C}_{4} \mathrm{H}_{10}$
$4 \mathrm{CO}_{2} 5 \mathrm{H}_{2} \mathrm{O}$
cycle (1)
correct values (1)
answer (1)
$X-2877=4(-394)+5(-286)$
$\mathrm{X}=-129\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
. (i) $-(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{1}(\mathrm{~g})$

$$
4(-394) 5(-286)-2877
$$

15. (a) (i) bonds broken
$(\mathrm{N}-\mathrm{N})+(\mathrm{O}=\mathrm{O})+(\mathrm{N}-\mathrm{H})=163+497+4(390)=2220\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
bonds made
$(\mathrm{N} \equiv \mathrm{N})+4(\tilde{\mathrm{OH}})=945+4(463)=2797\left(\mathrm{KJ} \mathrm{mo}^{1}\right)$
broken $\Delta \mathrm{H}$ is +ve and made $\Delta \mathrm{H}$ is -ve (1)
enthalpy of reaction $\stackrel{\sim}{=} 577\left(\right.$ KJ mo $\left.^{1}\right)(1) \quad 4$
(ii) $\frac{577}{32}=18.0(K J)(1) \quad 1$
(b) $\mathrm{N}-\mathrm{N}$ bond is weak/ higher Ea for ammonia/ rate too slow for ammonia/ too much energy to break bonds in ammonia / hydrazine is liquid/ do not need pressurised containers/ more moles/ lots of gas produced by hydrazine/ more energy per mole produced by hydrazine (1)
16. (a) (enthalpy change) when 1 mole of substance/ element/ compound (1) NOT energy needed is completely burnt (1)
(b) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\mathrm{l})+41 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
correctly balanced equation (1)
state symbols (species must be correct) (1)
(c) (i) $\square \mathrm{H}=\mathrm{mc} \square \mathrm{T}$ (1)
$\square \mathrm{H}=50 \times 4.18 \times 12.8=2675(\mathrm{~J})=2.68(\mathrm{~kJ})(1)$
ignore sign
(ii) Mr propan-1-ol $=60$ (1)
number moles $=0.00167(1) \quad 2$
(iii) $\square \mathrm{H}=\tilde{\left(1608\left(K J ~ m o \tilde{l}^{1}\right)\right.}$ (1) $\quad 1$
(iv) heat losses (1)
thermal capacity of beaker ignored (1)
conditions were non-standard (1)
combustion could be incomplete (1)
propan-1-ol evaporates (1)
water evaporates (1) 2
17. (i) the enthalpy change when 1 mole of compound/species/substance is formed [mention of 1 mole of elements negates this mark]
from its elements [NOT atoms/ions] (under standard conditions) \checkmark 2
(ii) $25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ and 1 atmos $/ 1 \times 10^{5} \mathrm{~Pa} \checkmark \quad 1$
18. $\mathrm{Pb}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}(\mathrm{s})$ (balancing for 1 mol of PbO) (state symbols)
19. (i) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\prime}=-718-3(-217)$

$=-\mathbf{6 7}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ (use of correct data \& multiplier	$\boldsymbol{V})$
	(correct signs
	(correct calculation of value
	\checkmark)

some possible ecf values: $\quad+67$ 2
-501 2
+501 1
-1369 2
$+1369 \quad 1$
(ii) $\Delta \mathrm{H}_{\mathrm{f}}^{\Theta}=-718+10+2(217)$
$=-274\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (use of correct data \& multiplie
(correct signs
(correct calculation of value \quad)
some possible ecf values: -57

-284	$[2]$	-294	$[2]$		
+424	$[1]$	+444	$[2]$	-491	$[2]$
-511	$[1]$	-708	$[1]$	-1142	$[2]$

for others, work through the calc: -[1] for each error.
20. $\mathrm{I}-\mathrm{I}(\mathrm{g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$ (state symbols \checkmark) (1 mole $\mathrm{I}_{2} \checkmark$)
21. No mark scheme available
22. No mark scheme available
23. No mark scheme available

